Indian Statistical Institute First Semester 2006-2007 Mid-Semester Examination M.Math.II Year Graph Theory and Combinatorics Date:15-09-06 Instructor: N S N Sastry

Time: 3 hrs

<u>Note:</u> Answers should be complete and to the point. Answer all questions.

- 1. Define the extendability of a $2-(v, k, \lambda)$ design. Show that a symmetric $2-(n^2+n+1, n+1, 1)$ design extends only if (n+2) divides 12. Show that a projective plane of order 2 is unique up to isomorphism and admits an extension. [20]
- 2. Determine the set of all cyclic codes of length 8 over \mathbb{F}_3 . Compute the parameters of the cyclic code over \mathbb{F}_3 of length 8 generated by $(X^2 + 1)(X^2 + X + 2)$. [20]
- 3. Compute the parameters of the $t (v, k, \lambda)$ design $(P_0^n(q), P_k^n(q))$, for the largest possible t. Here, $P_0^n(q)$ denotes the set of all points of a projective space of dimension n over \mathbb{F}_q , $P_k^n(q)$ denotes the set of its k dimensional subspaces and 2 < k < n. [15]
- 4. For a set S containing n elements, n > 0, determine the number of permutations of S which do not fix any element of S. [10]
- 5. Define a Hadamard matrix. Show that the Kronecker product of two Hadamard matrices is a Hadamard matrix. Deduce that there exists a Hadamard matrix of order 2^n for each n. [1+8+1]
- 6. If (X, \mathbb{B}) is a $2 (v, k, \lambda)$ design, then show that $(X, \{X \setminus B : B \in \mathbb{B}\})$ also is a 2-design. Compute its parameters. [10]
- 7. Compute the parameters of the binary cyclic code of length n, n-odd, generated by the minimal polynomial over \mathbb{F}_2 of a primitive nth-root of 1. [20]

* * **